Continuing on with my experiments with my pinhole grid, here’s a demonstration of focal spot blooming.
In a typical x-ray tube, you have electrons being emitted from the cathode filament and accelerated toward the tungsten anode. Being all the same charge, the electrons in this beam will naturally repel each other causing the beam to expand slightly before hitting the anode. When the tube current is low, there aren’t many electrons in the beam, so not a lot of expanding occurs before the anode is reached.
At high tube current, you have a lot of electrons coming off the cathode and going into the beam. Lots of electrons in the beam means more repulsion and you get much more expansion of the beam by the time it reaches the anode as a result.
Here’s an image I acquired using my pinhole grid at 50 kV, 50 mA and 100 ms (5 mAs). 50 mA is a pretty low tube current and about as low as most machines will go.
Now here’s an image acquired at 50 kV, 500 mA and 10 ms (5 mAs).
Note how much larger the focal spot images are at high tube current. This is focal spot blooming, and can result in an increase in focal spot size by up to a factor of 2 depending on the tube current.
Some time ago, I came across an image acquired using a pinhole array that showed very nicely how the effective focal spot changes across the image receptor due to the x-ray tube anode angle. I don’t recall if it was in a textbook or a paper, but it’s something I’ve been wanting to replicate for myself to include in my teaching file.
I found some ~1 mm thick sheet lead left over from from some past experiments and punched a bunch of holes in it on a 10 mm grid using a push pin.
After some experimenting to find a decent x-ray technique to use, I ended up with these two images for the large and small focal spots.
I’ve chosen to invert the grayscale to use a black background instead of the normal white to make the focal spot images easier to see.
The pinholes are a little bit on the large side (~1 mm diameter) so the focal spot images aren’t as well defined as what I’d have gotten using a pinhole camera (which has a ~0.1 mm diameter hole), but these are good enough for demonstration purposes.
What’s going on here?
In all x-ray tubes, the tungsten anode is angled about 12-17° from the perpendicular relative to the anode-cathode direction, as shown in the image below (taken from Review of Radiologic Physics by Walter Huda).
When most people think about the focal spot of the x-ray tube, they’re thinking about the effective focal spot (F). The focal spot size of a tube is specified along the central axis of the beam perpendicular to the image receptor. If you were to look up from the image receptor to the x-ray tube (along F), you’d see a tiny little rectangle where the x-rays come from.
Now, consider the situation where we move away from the perpendicular to some other location along the image receptor. Now if you look back at the x-ray tube, the effective focal spot size has changed (G and H).
The effective focal spot gets larger as you move toward the cathode, and smaller moving toward the anode. In addition, the shape of the focal spot changes as well. This is most easily seen in the large focal spot image above.
This effect has some interesting ramifications when it comes to talking about focal spot blurring. Because the effective focal spot size changes across the image receptor, this means the amount of focal spot blurring also changes across the image receptor. Fortunately, focal spot blurring is relatively small compared to other sources of blurring in medical imaging, so even though focal spot blurring varies across the image, it’s not a huge thing to worry about.